NOTA BENE! Quantum computing is already here! … in 2017!… far far sooner than anyone had ever speculated or had even dreamed it could come into being! And it has staggering implications for huge advances in all branches of technology and the sciences!


NOTA BENE! Quantum computing is already here! ... in 2017!... far far sooner than anyone had ever speculated or had even dreamed it could come into being! And it has staggering implications for huge advances in all branches of technology and the sciences! 

Dwave: the Quantum Computing Company (Click here): 

dwave-welcomoe-to-the-future

right here in Canada, no less, has just invented the first truly functional quantum computer. And the implications for the near, let alone the more distant, future of every branch of technology and for all of the sciences mankind is cognizant of are nothing short of staggering, indeed, dare I say, earth-shattering.

What is a quantum computer?

ALL ITALICS MINE

To quote verbatim the D-Wave company's definition of quantum computing:

A quantum computer taps directly into the fundamental fabric of reality — the strange and counter-intuitive world of quantum mechanics — to speed computation.

Quantum Computation:

Rather than store information as 0s or 1s as conventional computers do, a quantum computer uses qubits – which can be a 1 or a 0 or both at the same time. This “quantum superposition”, along with the quantum effects of entanglement and quantum tunnelling, enable quantum computers to consider and manipulate all combinations of bits simultaneously, making quantum computation powerful and fast.

How D-Wave Systems Work:

Quantum computing uses an entirely different approach than (sic: i.e. from) classical computing. A useful analogy is to think of a landscape with mountains and valleys. Solving optimization problems can be thought of as trying to find the lowest point on this landscape. (In quantum computers), every possible solution is mapped to coordinates on the landscape (all at the same time) , and the altitude of the landscape is the “energy’” or “cost” of the solution at that point. The aim is to find the lowest point on the map and read the coordinates, as this gives the lowest energy, or optimal solution to the problem.

Classical computers running classical algorithms can only “walk over this landscape”. Quantum computers can tunnel through the landscape making it faster to find the lowest point. The D-Wave processor considers all the possibilities simultaneously to determine the lowest energy required to form those relationships. The computer returns many very good answers in a short amount of time - 10,000 answers in one second. This gives the user not only the optimal solution or a single answer, but also other alternatives to choose from.

D-Wave systems use “quantum annealing” to solve problems. Quantum annealing “tunes” qubits from their superposition state to a classical state to return the set of answers scored to show the best solution.

Programming D-Wave:

To program the system a user maps their problem into this search for the lowest point. A user interfaces with the quantum computer by connecting to it over a network, as you would with a traditional computer (Comment by myself: This is one of the vital factors in the practical usefulness of the quantum computer). The user’s problems are sent to a server interface, which turns the optimization program into machine code to be programmed onto the chip. The system then executes a “quantum machine instruction” and the results are returned to the user.

D-Wave systems are designed to be used in conjunction with classical computers, as a “quantum co-processor”.

D-Wave’s flagship product, the 1000-qubit D-Wave 2X quantum computer, is the most advanced quantum computer in the world. It is based on a novel type of superconducting processor that uses quantum mechanics to massively accelerate computation. It is best suited to tackling complex optimization problems that exist across many domains such as:

Optimization 
Machine Learning 
Pattern Recognition and Anomaly Detection 
Financial Analysis 
Software/Hardware Verification and Validation

For the massive capabilities and the astounding specs of the D-Wave computer, Click on this link:

d-wave-2x-systewm

273-degress-celsius-near-absolute-zero

Comment by myself: Apparently, the severest limitation of the quantum computer (at least the first generation represented by D-Wave) is that it can only function at the temperature of – 273 celsius, i.e. a mere 0.015 degrees celsius above absolute zero, 180 X colder than the coldest temperature in the universe. But this limitation is merely apparent. Some will have it that this severe restriction makes the machine impractical, since, as they believe, it cannot be networkeed. But nothing could be further from the truth. It can be networked, and it is networked. All that is required is an external link from the near-absolute zero internal configuration of a quantum computer to the external wiring or wireless communication at room temperature at its peripheral to connect it directly to one or more digital computer consoles, thereby allowing the user(s) to connect the quantum computer indirectly to, you got it, the world wide web.

The implications of this real-world connectivity are simply staggering. Since the quantum computer, which is millions of times faster than the faster supercomputer in the world, it can directly feed its answers to any technological or scientific problem it can tackle at super-lightning speed to even personal computers, let alone the fastest supercomputers in existence! It instantly feeds its super-lightning calculations to the “terminal” computer and network (i.e. the Internet), thereby effectively making the latter (digital) system(s) virtually much more rapid than they actually are in reality, if you can wrap that one around your head.
    
MORE ON THE NATURE OF QUANTUM COMPUTING:

From this site:

quantum-computing-ions-sealed-in-a-vacuum

I quote, again verbatim:

Whereas classical computers encode information as bits that can be in one of two states, 0 or 1, the ‘qubits’ that comprise quantum computers can be in ‘superpositions’ of both at once. This, together with qubits’ ability to share a quantum state called entanglement, should enable the computers to essentially perform many calculations at once (i.e. simultaneously). And the number of such calculations should, in principle, double for each additional qubit, leading to an exponential speed-up.

This rapidity should allow quantum computers to perform certain tasks, such as searching large databases or factoring large numbers, which would be unfeasible for slower, classical computers. The machines could also be transformational as a research tool, performing quantum simulations that would enable chemists to understand reactions in unprecedented detail, or physicists to design materials that superconduct at room temperature.

The team plans to achieve this using a ‘chaotic’ quantum algorithm that produces what looks like a random output. If the algorithm is run on a quantum computer made of relatively few qubits, a classical machine can predict its output. But once the quantum machine gets close to about 50 qubits, even the largest classical supercomputers will fail to keep pace, the team predicts.  

And yet again, from another major site:

wauntum-computing-to-overtrun-cybersecuritySpooky action at a distance” is how Albert Einstein described one of the key principles of quantum mechanics: entanglement. Entanglement occurs when two particles become related such that they can coordinate their properties instantly even across a galaxy. Think of wormholes in space or Star Trek transporters that beam atoms to distant locations. Quantum mechanics posits other spooky things too: particles with a mysterious property called superposition, which allows them to have a value of one and zero at the same time; and particles’ ability to tunnel through barriers as if they were walking through a wall.

All of this seems crazy, but it is how things operate at the atomic level: the laws of physics are different. Einstein was so skeptical about quantum entanglement that he wrote a paper in 1935 titled “Can quantum-mechanical description of physical reality be considered complete?” He argued that it was not possible.
In this, Einstein has been proven wrong. Researchers recently accessed entangled information over a distance of 15 miles. They are making substantial progress in harnessing the power of quantum mechanics.

Einstein was right, though, about the spookiness of all this.

D-Wave says it has created the first scalable quantum computer. (D-Wave): 

Quantum mechanics is now being used to construct a new generation of computers that can solve the most complex scientific problems—and unlock every digital vault in the world. These will perform in seconds computations that would have taken conventional computers millions of years. They will enable better weather forecasting, financial analysis, logistical planning, search for Earth-like planets, and drug discovery. And they will compromise every bank record, private communication, and password on every computer in the world — because modern cryptography is based on encoding data in large combinations of numbers, and quantum computers can guess these numbers almost instantaneously.

There is a race to build quantum computers, and (as far as we know) it isn’t the NSA that is in the lead. Competing are big tech companies such as IBM, Google, and Microsoft; start-ups; defence contractors; and universities. One Canadian start-up says that it has already developed a first version of a quantum computer. A physicist at Delft University of Technology in the Netherlands, Ronald Hanson, told Scientific American that he will be able to make the building blocks of a universal quantum computer in just five years, and a fully-functional demonstration machine in a little more than a decade.

These will change the balance of power in business and cyber-warfare. They have profound national security implications, because they are the technology equivalent of a nuclear weapon.

Let me first explain what a quantum computer is and where we are.

In a classical computer, information is represented in bits, binary digits, each of which can be a 0 or 1. Because they only have only two values, long sequences of 0s and 1s are necessary to form a number or to do a calculation. A quantum bit (called a qubit), however, can hold a value of 0 or 1 or both values at the same time — a superposition denoted as “0+1.”

The power of a quantum computer increases exponentially with the number of qubits. Rather than doing computations sequentially as classical computers do, quantum computers can solve problems by laying out all of the possibilities simultaneously and measuring the results.

Imagine being able to open a combination lock by trying every possible number and sequence at the same time. Though the analogy isn’t perfect — because of the complexities in measuring the results of a quantum calculation — it gives you an idea of what is possible.

Most researchers I have spoken to say that it is a matter of when — not whether — quantum computing will be practical. Some believe that this will be as soon as five years; others say 20 years. (ADDDENDUM by myself. WRONG! Not in 20 years, but right now. We have already invented the first functional quantum computer, the D-Wave (see above)). 

One Canada-based startup, D-Wave, says it has already has done it. Its chief executive, Vern Brownell, said to me in an e-mail that D-Wave Systems has created the first scalable quantum computer, with proven entanglement, and is now working on producing the best results possible for increasingly complex problems. He qualified this claim by stressing that their approach, called “adiabatic computing,” may not be able to solve every problem but has a broad variety of uses in optimizing computations; sampling; machine learning; and constraint satisfaction for commerce, national defence, and science. He says that the D-Wave is complementary to digital computers; a special-purpose computing resource designed for certain classes of problems.

The D-Wave Two computer has 512 qubits and can, in theory, perform 2 raised to 512 operations simultaneously. That’s more calculations than there are atoms in the universe — by many orders of magnitude. Brownell says the company will soon be releasing a quantum processor with more than 1,000 qubits. He says that his computer won’t run Shor’s algorithm, an algorithm necessary for cryptography, but it has potential uses in image detection, logistics, protein mapping and folding, Monte Carlo simulations and financial modeling, oil exploration, and finding exoplanets (and allow me to add, in breaking the entire genome!)

So quantum computers are already here in a limited form, and fully functional versions are on the way. They will be as transformative for mankind as were the mainframe computers, personal computers, and smartphones that we all use. As do all advancing technologies, they will also create new nightmares. The most worrisome development will be in cryptography. Developing new standards for protecting data won’t be easy. The RSA standards that are in common use each took five years to develop. Ralph Merkle, a pioneer of public-key cryptography, points out that the technology of public-key systems, because it is less well-known, will take longer to update than these — optimistically, ten years. And then there is a matter of implementation so that computer systems worldwide are protected. Without a particular sense of urgency or shortcuts, Merkle says, it could easily be 20 years before we’ve replaced all of the Internet’s present security-critical infrastructure.

(ADDENDUM: I think not! It will happen far, far sooner than that! I predict possibly as early as 2020.)  It is past time we began preparing for the spooky technology future we are rapidly heading into. Quantum computing represents the most staggering and the swiftest advancement of human hyperintelligence in the history of humankind, with the potential for unlocking some of the most arcane secrets of the universe itself. It signifies, not just a giant, but literally a quantum leap in human intelligence way, way beyond the pale. If we thought the Singularity was near before the advent of the quantum computer, what about now? Think about this, even for the merest split second, and you will blow your own mind!   It certainly blew mine!  Think of this too. What if one were to directly tap the human mind into a room temperature digital peripheral of a quantum computer? What then? I pretty much have a very good idea of what then!  

The staggering implications of quantum computing for the potential total decipherment of, not only Minoan Linear A, but of every other as yet undeciphered, unknown ancient language:
 
In the next post, I shall expostulate the profound implications the advent of the quantum computer is bound to have on the decipherment of not only Minoan Linear A, but of every other as-yet unknown, and undeciphered, ancient language. I strongly suspect that we will now soon be able to crack Minoan Linear A, and several other unknown ancient languages to boot.

And, trust me, I shall be one of the first historical linguists at the forefront of this now potentially attainable goal, which is now tantalizingly within our reach. 

Advertisement

CRITICAL POST! The 4 major tenses of the derived (D) optative mood of thematic verbs in Mycenaean Linear B


CRITICAL POST! The 4 major tenses of the derived (D) optative mood of thematic verbs in Mycenaean Linear B:

Here is the paradigm of the 4 major tenses of the optative mood in Mycenaean Linear B, based on the derived (D) template verb, naie (ancient Greek, naiein) = to dwell in, inhabit:

paradigm-of-the-optative-mood-in-linear-b

Note that we have provided two examples of derivative (D) sentences in this table of the paradigms for the 4 tenses of the optative mood in Mycenaean Linear B and ancient Greek in order to facilitate a better understanding of its functionality.

As can be seen from the table above, there are only 4 primary tenses for the optative mood of thematic (and indeed for athematic) verbs in Mycenaean Linear B, as well as in ancient Greek. These are:

the optative present
the optative future
the optative aorist (or simple past)
the optative perfect

There is no optative imperfect. It is a contradiction in terms. How is it possible that something was in fact happening, kept on happening or used to happen, when it is readily apparent that the optative mood always runs contrary to reality. The optative mood only and always refers to potentialities or possibilities, never to actual situations, which of course strictly call for the indicative mood. 

The optative mood has no equivalent whatsoever in any modern Centum or Occidental language, including modern Greek. It lapsed out of use before the advent of modern Greek. The optative mood sometimes plays a similar role to the subjunctive mood in ancient Greek, but by no means always. As a matter of course, we shall not be deriving a table of the tenses of the subjunctive mood in Mycenaean Linear B, for two conclusive reasons:
1. The subjunctive mood occurs nowhere on any Linear B tablets, i.e. it is not attested, or so it would seem so... because...
2. The subjunctive mood is virtually indistinguishable from the active in Mycenaean Linear B, whether or not we are dealing with thematic or athematic verbs, for the simple reason that Mycenaean Linear B cannot distinguish between short and long vowels. In other words, while ancient Greek allows for the subjunctive mood, which calls for the lengthening of the vowel in any person of the present tense, this is impossible in Mycenaean Linear B.

So there would simply be no point in attempting to reconstruct a mood which could not even be observed on Mycenaean Linear B tablets, even it were present. But it never is to be found on any extant tablet, i.e. it is nowhere attested (A), because Mycenaean Linear B tablets almost exclusively deal with inventories, which are by nature factual, thereby automatically calling for the indicative, and precluding the subjunctive.

It may seem counter-intuitive to find the optative on at least one Linear B tablet, but there is a tenable explanation for this phenomenon. Since the tablet in question deals with religious matters, it makes sense for the optative to be present. For instance, it is possible to say in Mycenaean Linear B,

May we all worship the Goddess of the Winds.
-or-
If only they believed in the gods!

These sentences make perfect sense in Mycenaean Greek.

But this still leaves us with the burning question, what on earth is the optative mood?

This is no easy question to answer. But I shall do my level best. To begin with, it is highly expedient to consult the Wikipedia article on the optative mood in ancient Greek:

wikipedia-optative-ancient-greek

since doing so will expedite your understanding of the functions of the optative. Essentially, these are as follows:

1. to express a wish on behalf of the welfare of someone, e.g.:

May you be happy.
May you live long and be prosperous.

2. to express the wish or hope,... if only (which is contrary to reality, as it never happened anyway, no matter how much or how dearly one might have wished it had happened), e.g.:

If only the Mycenaeans had not conquered Knossos.
If only Donald Trump had not won the U.S. Election! (Fat chance of that!)

3. The potential optative expresses something that would or could happen in a hypothetical situation in the future, e.g.

I wouldnt be surprised if the fortress of Mycenae were to fall in the next few years.
I wouldnt be surprised if Donald Trump were impeached. (Good luck for that one!)

4. Potential in the aorist or the past tense, e.g.     

The king of Knossos fled the city for fear that he might be caught and imprisoned.

5. For purpose clauses in past time, the optative can follow the conjunction so that:

The king has brought us all together so that we might discuss the situation regarding the possibility of an outbreak of war.

6. After verbs expressing fear: 

I was afraid that he had gone out of his mind.

7. for formal benedictions or prayers (primarily in the New Testament), e.g.:

May the Grace of the Lord Jesus Christ be with you.
May the Lord grant you mercy.

There are even more uses of the optative, but I do not wish to belabour the point. Suffice it to say, this mood is extremely flexible in ancient Greek. It always references actions or situations contrary to reality. It is often quite difficult for us in this present day and age to really get a grip on the various functionalities of the optative tense in ancient Greek, but get a grip we must if we are ever to really, clearly grasp what ancient Greek sentences relying on the optative actually mean, once we have embarked on that most challenging of journeys, to learn ancient Greek, to easy matter, let me tell you from personal experience.