How circular language in the movie, Arrival, determines the aspacial/atemporal nature of logograms throughout the ages

How circular language in the movie, Arrival, determines the aspacial/atemporal nature of logograms throughout the ages:

In the movie, Arrival (2016), which chronicles the arrival on earth of 12 mysterious ships, apparently from outer space, the following statements leap out at us:

parsing the language of the heptapods in the movie, Arrival

1. Unlike all written languages, the writing is semiseriographic. It conveys meaning. It doesn't represent sound. Perhaps they view our form of writing as a wasted opportunity.  
2. How heptapods write: ... because unlike speech,  a logogram is free of time. Like their ship, their written language has forward or backward direction. Linguists call this non-linear orthography, which raises the question, is this how they think? Imagine you wanted to write a sentence using 2 hands, starting from either side. You would have to know each word you wanted to use as well as much space it would occupy. A heptapod can write a complex sentence in 2 seconds effortlessly.

The key to all of this is the phrase a logogram is free of time. Allow me to illustrate. Logograms are also often called ideograms, and that is what I prefer to call them. Another word to describe them is icon. When we examine ancient Linear A and B ideograms and compare them with modern ones, the results are astonishing, to wit:




All of the aforementioned examples make it quite clear that ideograms, whether they be as ancient as those in Linear A and Linear B (i.e. about 3,400 years old) or modern ... or for that matter, neolithic or even earlier, all bear a striking resemblance to one another. Take for instance the Linear A ideogram for “scales” and compare it with just one modern one (among so many others), and we see immediately that they are extremely similar. Now take the Linear B ideograms for man” and “woman” and compare these with the washroom symbols for the same and once again the similarity is almost too good to be true. Then there is the Linear B ideogram for a four-spoke wheel compared with a modern one for an eight-spoke wheel. The number of spokes is not relevant to this discussion, only the fact that the ancient Linear B ideogram for “wheel” is practically identical to the modern one.

The implications for the decipherment of ideograms in any language, ancient or modern (let alone Linear A and Linear B) versus those in any modern language are staggering. We can be sure that the ancient ideograms varied little from one language to another, let alone between Minoan and Mycenaean. In fact, the syllabogram TE, which sometimes represents wheat, in Linear A and Linear B is almost identical to the same ideograms in cuneiform!

It is patently obvious that since the distinction between the ancient ideograms and their modern equivalents enumerated above is so thin, all of these ideograms (or logograms or icons) are not only time independent (atemporal) and spatially independent (aspatial), they are also language independent. This is a stunning phenomenon.

The implications for the further decipherment of Linear A are simply overwhelming.

And this is why in the movie, Arrival, the heptapods assert, “There is no time.”

Just how did I manage to crack the previously impenetrable wall of Minoan Linear A and manage to at least partially decipher several tablets in Linear A?

Just how did I manage to crack the previously impenetrable wall of Minoan Linear A and manage to at least partially decipher several tablets in Linear A?

... by relying heavily on the unconscious quantum level of mental processing and processes, as illustrated theoretically here


I is quite apparent from my theoretical analysis of how I came to my conclusions that I was using my mind in much the same way as a quantum computer. But that should not be surprising to anyone at all who is deeply devoted to scientific research of any kind, because that is how the scientific mind fundamentally operates, and always has.
To illustrate my point precisely, reference these 2 figures from my upcoming article in Archaeology and Science:



in which I reference my most successful decipherment of any Minoan Linear A tablet, that of Haghia Triada HT 31, which I was able to decipher in its totality by means of retrogressive cross-correlation with Mycenaean Linear B tablet Pylos Py TA 641-1952 (Ventris). My successful decipherment of this keystone Minoan Linear A tablet has served as the effectual template for my partial decipherment of numerous other Minoan Linear A tablets. Unfortunately, I cannot release my findings to the world at this time, as my article, “The Mycenaean Linear B “Rosetta Stone” to Minoan Linear A Tablet HT 31 (Haghia Triada) Vessels and Pottery” is slated for publication in Archaeology and Science (ISSN 1452-7448), Vol. 16, 2018, and as such is sealed in secrecy to the reading public until such time as its release sometime early in 2018. So I guess you will all have to be as patient as I must be, even though I already have all the answers firmly in hand. In the meantime, the 2 figures from that article I have posited above should serve to whet your appetite.

The application of geometric co-ordinate analysis (GCA) to parsing scribal hands: Part A: Cuneiform

The application of geometric co-ordinate analysis (GCA) to parsing scribal hands: Part A: Cuneiform


I propose to demonstrate how geometric co-ordinate analysis of cuneiform, the Edwin-Smith hieroglyphic papyrus (ca. 1600 BCE), Minoan Linear A, Mycenaean Linear B and Arcado-Cypriot Linear C can confirm, isolate and identify with great precision the X Y co-ordinates of single characters or syllabograms in their respective standard fonts, and in the multiform cursive “deviations” from their fixed font forms, or to put it in different terms, to parse the running co-ordinates of each character, syllabogram or ideogram of any scribal hand in each of these scripts. This procedure effectively encapsulates the “style” of any scribe’s hand, just as we would nowadays characterize any individual’s handwriting style. This hypothesis constitutes a breakthrough in the application of graphology a.k.a epigraphy based entirely on the scientific procedure of geometric co-ordinate analysis (GCA) of scribal hands, irrespective of the script under analysis.


cuneiform font
Any attempt to isolate, identify and characterize by manual visual means alone the scribal hand peculiar to any single scribe incising a tablet or series of tablets common to his own hand, in other words, in his own peculiar style, has historically been fraught with difficulties. I intend to bring the analysis of scribal hands in cuneiform into much sharper focus by defining them as constructs determined solely by their relative positioning on the X Y axis plane in two-dimensional Cartesian geometry. This purely scientific approach reduces the analysis of individual scribal hands in cuneiform to a single constant, which is the point of origin (0,0) in the X Y axis plane, from which the actual positions of each and every co-ordinate on the positive planes (X horizontally right, Y vertically up) and negative planes (X horizontally left, Y vertically down) are extrapolated for any character in this script, as illustrated by the following general chart of geometric co-ordinates (Click to ENLARGE):

A xy analysis
Although I haven’t the faintest grasp of ancient cuneiform, it just so happens that this lapsus scientiae has no effect or consequence whatsoever on the purely scientific procedure I propose for the precise identification of unique individual scribal hands in cuneiform, let alone in any other script, syllabary or alphabet  ancient or modern (including but not limited to, the Hebrew, Greek, Latin, Semitic & Cyrillic alphabets), irrespective of language, and even whether or not anyone utilizing said procedure understands the language or can even read the script, syllabary or alphabet under the microscope.    

This purely scientific procedure can be strictly applied, not only to the scatter-plot positioning of the various strokes comprising any letter in the cuneiform font, but also to the “deviations” of any individual scribe’s hand or indeed to a cross-comparative GCA analysis of various scribal hands. These purely mathematical deviations are strictly defined as variables of the actual position of each of the various strokes of any individual’s scribal hand, which constitutes and defines his own peculiar “style”, where style is simply a construct of GCA  analysis, and nothing more. This procedure reveals with great accuracy any subtle or significant differences among scribal hands. These differences or defining characteristics of any number of scribal hands may be applied either to:

(a)  the unique styles of any number of different scribes incising a trove of tablets all originating from the same archaeological site, hence, co-spatial and co-temporal, or
(b)  of different scribes incising tablets at different historical periods, revealing the subtle or significant phases in the evolution of the cuneiform script itself in its own historical timeline, as illustrated by these six cuneiform tablets, each one of which is characteristic of its own historical frame, from 3,100 BCE – 2,250 BCE (Click to ENLARGE),

B Sumerian Akkadian Babylonian stamping
and in addition

(c)  Geometric co-ordinate analysis is also ideally suited to identifying the precise style of a single scribe, with no cross-correlation with or reference to any other (non-)contemporaneous scribe. In other words, in this last case, we find ourselves zeroing in on the unique style of a single scribe. This technique cannot fail to scientifically identify with great precision the actual scribal hand of any scribe in particular, even in the complete absence of any other contemporaneous cuneiform tablet or stele with which to compare it, and regardless of the size of the cuneiform characters (i.e. their “font” size, so to speak), since the full set of cuneiform characters can run from relatively small characters incised on tablets to enormous ones on steles. It is of particular importance at this point to stress that the “font” or cursive scribal hand size have no effect whatsoever on the defining set of GCA co-ordinates of any character, syllabogram or ideogram in any script whatsoever. It simply is not a factor.

To summarize, my hypothesis runs as follows: the technique of geometric co-ordinate analysis (GCA) of scribal hands, in and of itself, all other considerations aside, whether cross-comparative and contemporaneous, or cross-comparative in the historical timeline within which it is set ( 3,100 BCE – 2,250 BCE) or lastly in the application of said procedure to the unambiguous identification of a single scribal hand is a strictly scientific procedure capable of great mathematical accuracy, as illustrated by the following table of geometric co-ordinate analysis applied to cuneiform alone (Click to ENLARGE):

C geometric co-ordinate analysis of early mesopotamian cuneifrom

The most striking feature of cuneiform is that it is, with few minor exceptions (these being circular), almost entirely linear even in its subsets, the parallel and the triangular, hence, susceptible to geometric co-ordinate analysis at its most fundamental and most efficient level. 

It is only when a script, syllabary or alphabet in the two-dimensional plane introduces considerably more complex geometric variables such as the point (as the constant 0,0 = the point of origin on an X Y axis or alternatively a variable point elsewhere on the X Y axis), the circle and the oblong that the process becomes significantly more complex. The most common two-dimensional non-linear constructs which apply to scripts beyond the simple linear (such as found in cuneiform) are illustrated in this chart of alternate geometric forms (Click to ENLARGE):

D alternate geometric forms
These shapes exclude all subsets of the linear (such as the triangle, parallel, pentagon, hexagon, octagon, ancient swastika etc.) and circular (circular sector, semi-circle, arbelos, superellipse, taijitu = symbol of the Tao, etc.), which are demonstrably variations of the linear and the circular.
These we must leave to the geometric co-ordinate analysis of Minoan Linear A, Mycenaean Linear B and Arcado-Cypriot Linear C, all of which share these additional more complex geometric constructs in common. When we are forced to apply this technique to more complex geometric forms, the procedure appears to be significantly more difficult to apply. Or does it? The answer to that question lies embedded in the question itself. The question is neither closed nor open, but simply rhetorical. It contains its own answer.

It is in fact the hi-tech approach which decisively and instantaneously resolves any and all difficulties in every last case of geometric co-ordinate analysis of any script, syllabary or indeed any alphabet, ancient or modern. It is neatly summed up by the phrase, “computer-based analysis”, which effectively and entirely dispenses with the necessity of having to manually parse scribal hands or handwriting by visual means or analysis at all. Prior to the advent of the Internet and modern supercomputers, geometric co-ordinate analysis of any phenomenon, let alone scribal hands, or so-to-speak  handwriting post AD (anno domini), would have been a tedious mathematical process hugely consuming of time and human resources, which is why it was never applied at that time. But nowadays, this procedure can be finessed by any supercomputer plotting CGA co-ordinates down to the very last pixel at lightning speed. The end result is that any of an innumerable number of unique scribal hand(s) or of handwriting styles can be isolated and identified beyond a reasonable doubt, and in the blink of an eye. Much more on this in Part B, The application of geometric co-ordinate analysis to Minoan Linear A, Mycenaean Linear B and Arcado-Cypriot Linear C. However strange as it may seem prima facie, I leave to the very last the application of this unimpeachable procedure to the analysis and the precise isolation of the unique style of the single scribal hand responsible for the Edwin-Smith papyrus, as that case in particular yields the most astonishing outcome of all.

© by Richard Vallance Janke 2015 (All Rights Reserved = Tous droits réservés)

Astounding Discovery! NASA: Interstellar Communication & Linear B Part 2: The Geometric Economy of Linear B. This is a Mind-Blower!

Astounding Discovery! NASA: Interstellar Communication & Linear B Part 2: The Geometric Economy of Linear B. This is a Mind-Blower!

For the original article by Richard Saint-Gelais, click here:

Before I even begin to address the possibilities of interstellar communication based on the fundamental properties of the Linear B script, I would like to refer you to a sequential series of very early posts on our Blog, in which I formulated the basic thesis that, in fact, the Linear B script for Mycenaean Greek is based on the fundamental principle of Geometric Economy, a highly unusual, if not outright exceptional characteristic of the Linear B central construct of a syllabary+logography+ideography:

linearbgeometriceconomy 2014

And moving onto Numerics:

1-10-100-113 2014
Extended Set: Linear & Circular:

allgeometricbasic 2014
Application of the Extended Set to Linear B Syllabograms and Supersyllabograms: Click to ENLARGE

Rectangular Syllabograms in Linear B

Note that, even though Michael Ventris and Prof. John Chadwick, his intimate colleague & mentor, successfully deciphered some 90% of the Mycenaean Linear B syllabary, neither was aware of the existence of Supersyllabograms, of which there at least 30, all of them a subset of the basic set of Linear B syllabograms. Moreover, even though I myself hit upon the hypothesis and the principle that Supersyllabograms do indeed exist, some of them still defy decipherment, even at a human level, let alone extraterrestrial, which only adds further fuel to the raging fire that awaits us when we take even our first baby steps into the putatively impossible task of interstellar communications reliant on syllabaries similar to Minoan Linear A, Mycenaean Linear B & Arcado-Cypriot Linear C. For my initial post announcing the existence of Supersyllabograms in Linear B and their profound ramifications in the further simplification of the syllabary, click here:

Linear B Previous Post   

At the time I first posted these Paradigmatic Tables of the Geometric Economy of Linear B, I already suspected I was onto something really big, and even that the very hypothesis of the Geometric Economy of Linear B might and indeed could have potentially colossal ramifications for any operative semiotic base for devising altogether new scripts, scripts that have never been used either historically or in the present, but which could be successfully applied to dynamically artificial intelligence communications systems. However inchoate my musings were at that time that Linear B, being as geometrically economic as it obviously was, at least to my mind, might and could also apply to extra-human communication systems, i.e. communication with extraterrestrials, the thought did pass through my mind, in spite of its apparent absurdity. That is how my mind works. I have repeatedly asserted in this blog that I am forever “the doubting Thomas”, extremely prone not to believe anything that passes before the videographic panorama of my highly associative intellect. Put another way, I recall a fellow researcher of mine, Peter Fletcher, informing me that I had a “lateral mindset”. I had never considered it from that angle before, but even with this truly insightful observation, Peter had not quite hit the mark. Not only does my reasoning process tend to be highly associative and lateral, but also circular, with all of the tautological implications that carries with it.

I devised this paradigm chart of (approximately) rectangular syllabograms and supersyllabograms in Linear B to illustrate how such symbols could conceivably be transmitted to interstellar civilizations in the implausible hope that we might, just might, be able to transmit something vaguely intellgible, however miniscule, to such imagined aliens. But as you might easily imagine, even from a chart of only a small subset of the 61 syllabograms alone in Linear B (another herculean task not yet completed), the dilemma is fraught with almost insurmountable difficulties, even at the theoretical, conjectural level.

In fact, I am a firm believer in the precept that all human rational thought-process are in fact just that, tautological, which is the fundamental reason why it is so utterly perplexing for us as mere humans to even begin to imagine anything at all otherwise, i.e. to think outside the box. But we can if we must. Otherwise, any attempt to communicate on a semiotic basis with extraterrestrial intelligence(s) is simply doomed to failure. The reason is obvious: the semiotic ground and its spinoff framework of signifiers and signified of every single extraterrestrial intelligence (if indeed any such beast exists... see doubting Thomas above) is almost certainly and (inevitably) bound to be completely unlike, or to put it even more accurately, completely alien to any other. And this is precisely where we are on extremely slippery grounds. We may be skating on the surface of the ice, but the ice is thin and is bound almost certainly to crack, before any given extraterrestrial intelligence can even begin to decipher the semiotic framework of our own unique structure of signals, as Richard Saint-Gelais nicely points out in Chapter 5 of his study of the principles underlying the possible communication, however remote, with any single given extraterrestrial intelligence. I cannot stress this enough. The snares and traps we can so easily slip into far outweigh any practical framework even remotely potentially applicable to the (far-fetched) possibility of extraterrestrial communication. But this does not necessarily imply that such communication is impossible. Extremely improbable, yes, but impossible, no. See Infinite Improbability Drive in the Spaceship, Heart of Gold, Wikipedia:

Infinite Improbability Drive

If you have not yet read The Hitchhikers Guide to the Galaxy by Douglas Adams, I urge you to do so, at least if you have a sense of humour as nutty as mine. I swear to God it will leave you laughing out loud.

But I have not yet done with the possibility, however, remote, of extraterrestrial communication. There is another ancient syllabary, the younger cousin of Mycenaean Linear B, namely, Arcado-Cypriot Linear C, of which the Geometric Economy is even more streamlined and considerably less complex than that of Linear B. I have neither the energy nor the time to even begin approaching that huge undertaking, but you can be sure that I shall eventually take a firm aim at the possibilities for extraterrestrial communication inherent in Arcado-Cypriot Linear C, probably sometime in the winter of 2015. Meanwhile, I would like you all to seriously entertain this notion, which has fascinated me to no end for years and years, namely, that the Greeks, brilliant as they were, were far beyond their contemporaries, including the Romans, by inventing the Linear B & Linear C syllabaries, and consequently the ancient Greek alphabet, all of which sported at the very least the five basic vowels. The whole point is that no other Occidental or Centum ancient writing system prior to ancient Greek, had even dreamt of the concept of vowels – although of course, Oriental Sanskrit, the Satem Indo-European cousin of Greek, had done precisely the same thing! No huge surprise there either, given that the Sanskrit scribes and philosophers were as intellectually refined as the Greeks.

For my previous discussion of The Present and Imperfect Tenses of Reduplicating – MI – Verbs in Linear B & the Centum (Greek) – Satem (Sanskrit) branches of ancient Indo-European languages, click on this banner:
Linear B Previous Post

Now let’s take my assumption one step further. What I am saying, to put it as plainly as the nose on my face, is that the invention of the ancient Greek & Sanskrit writing systems was as enormous a leap in the intellectual progress of humankind as were the equally astounding invention of printing by the Germans & Italians in the early Renaissance, and of computers & the spectacular explosion of the space race in the latter part of the twentieth century, to say nothing of the swift global propagation of the World Wide Web from ca. 1990 to the present. Each of these intellectual leaps have been absolutely pivotal in the advancement of human thinking from concrete to abstract to, we might as well say it out loud, to cosmic, which we are already the cusp of. Three greatest historical revolutions in the expansion of human consciousness, without which we would never have even been capable to rising to the cosmic consciousness which is dawning on humanity at this very moment in our historical timeline.

But, here lies the real crux: without the first great leap the Greeks took in their astonishing invention of Linear B, Linear C & the Greek alphabet, neither of the next two revolutions in human thought could possibly have manifested themselves. But of course, all three did, because all three were inevitable, given the not-so-manifest, but intrinsic destiny humankind has always had access to to, however little we may have been conscious of it “at the time”. But what is time in the whirlpool of infinity? Apparently, not nothing. Far from it. Time is a construct of infinity itself. Einstein is the password. Given this scenario, cosmic consciousness is bound to toss us unceremoniously even out of the box. What a mind-boggling prospect! But someday, possibly even in the not too distance future, we will probably be up to it. We can only hope and pray that we will. It is after all the only way out of the ridiculously paradoxical conundrums which presently face us in the herculean task of communicating at all with alien intelligences. 

Richard Vallance Janke, November 2014