Is the Minoan language proto-Altaic or proto-Japanese? The vast bulk of current diachronic linguistic research stacks up squarely against this hypothesis: According to Ms.Gretchen Leonhardt of:and I quote: While there has been much debate about the underlying language of Linear A, I disagree that LinA does not resemble a known language. Despite its similarities to Japanese, historical linguists dismiss a correlation for at least two reasons: (1) the apparent lack of genetic evidence and (2) the universally held belief that LinA is an Indo-European language. Regarding the first justification, if linguists are looking to mainland Japan for genetic evidence, they are looking too far north. By whatever means, it appears that, around 1000 BCE, the Minoans entered Japan from the southern islands, and gradually moved north. Regarding the second justification, Minoan scholarship generally agrees that the Minoans migrated from the Anatolian region**, which suggests an Altaic origin or influence. Likewise, Japanese scholarship suggests that the Japanese language belongs to the Japonic-language family, which is believed to have an Altaic origin or influence. General consensus dates the demise of the high Minoan civilization as late as 3,500 years ago, with the widespread destruction of the palace centers, while Neil Gordon Munro dates the commencement of the Yamato culture, which is the presumed progenitor of modern Japanese civilization, as early as 3,000 years ago. According to Munro, the origin of the Yamato culture is unknown but had arrived in a highly advanced state. The culture is notable for its grave goods–bronze arrowheads, bells, and halberds. The culture is also notable for its wheel-thrown pottery, which employed “restrained” decoration with “subdued color” [1908:4]. Comment: Munro was writing in 1908, when linguistic assumptions about Altaic languages were in their infancy! Modern scholarship has all but refuted the assumptions about Altaic languages in vogue at the beginning of the twentieth century, i.e. 100 years ago! She continues: The Okinawan (Uchina’a) Japanese remain culturally, genetically, and linguistically distinct from the mainland (Yamato) Japanese, although the two cultures are believed to share a common proto language. This forum will provide support–through disciplines such as archaeology, architecture, art, genetics, and language–for my dual theories that LinA is proto Japanese and that the Minoan civilization provides a rich backdrop for Japanese history, which, for millennia, has been shrouded in mystery. I hasten to add that in the preceding passage, Ms. Leonhardt has made egregious errors with respect to Minoan Linear A. These are: 1. On the one hand, she claims to disagree that “LinA does not resemble a known language.” 2. and then goes straight ahead to flatly contradict herself by decrying “the universally held belief that LinA is an Indo-European language.” Universally held? Very far from it. The controversy over the origin and language class Linear A purportedly belongs to still rages on, as attested by innumerable studies on academia.edu alone which contradict one another with respect to the language family or class to which Linear A purportedly belongs. All this after she has just lament the fact that Linear A does not resemble any known language (1.) 3. She goes on... “it appears that, around 1000 BCE, the Minoans entered Japan from the southern islands, and gradually moved north. Regarding the second justification, Minoan scholarship generally agrees that the Minoans migrated from the Anatolian region** (Does it? Perhaps in 1908, but I sincerely doubt this is the case today), which suggests an Altaic origin or influence.” But what she obviously overlooks in this statement is the distinct probability, and indeed strong likelihood that the Minoan language almost certainly had already existed for some 1,200 years before the Minoans migrated to the southern Japanese islands, if they ever did so in the first place... which is a highly contentious claim. Moreover, while a few researchers still claim that the proto-Japanese dialect she is referencing belongs to the Altaic class of languages, the majority of current researchers number are convinced that this cannot be so. And I quote (all italics mine):
Micro-Altaic includes about 66 living languages,[9] to which Macro-Altaic would add Korean, Japanese and the Ryukyuan languages for a total of about 74. (These are estimates, depending on what is considered a language and what is considered a dialect. They do not include earlier states of languages, such as Middle Mongol, Old Korean or Old Japanese.) Opponents maintain that the similarities are due to areal interaction between the language groups concerned. The inclusion of Korean and Japanese has also been criticized and disputed by other linguists. The original Altaic family thus came to be known as the Ural–Altaic.[13] In the "Ural–Altaic" nomenclature, Finno-Ugric and Samoyedic are regarded as "Uralic", whereas Turkic, Mongolic, and Tungusic are regarded as "Altaic"—whereas Korean is sometimes considered Altaic, as is, less often, Japanese. In other words, proto-Japanese, including the dialect with which Ms. Leonhardt is concerned, may not be (proto-) Altaic at all.
4. Moroever, the following timetable seems to be the most realistic for the appearance of written Japanese (italics mine):
(3) Timetable: To illustrate the prehistory of Japan, I'd put two lines on the timetable. The first line comes around 400 to 300 BC. This is the time when wet rice culture and iron processing came to the Japanese Islands, and the way of life there changed. Yet an older form of the Japanese language started to be spoken from that time. I'd call this phase of the language "proto-Japanese", which later evolved to our Old Japanese. Comment: Now it is clear from this diachronic timeline that proto-Japanese appeared at least 1,800 years after the first attestation of the Minoan language ca. 2200 BCE. And again (italics mine):
Along with the foreign faith, Japan establishes and maintains for 400 years close connections with the Chinese and Korean courts and adopts a more sophisticated culture. This new culture is essentially Chinese and includes literature, philosophy, art, architecture, science, medicine, and statecraft. Most important is the introduction of the Chinese writing system, revolutionizing Japan, which heretofore had no writing system of its own, and ushering in the country’s historical period. (Comment: in other words, writing appeared in Japan only after 500 AD, some 2,700 years after the advent of the Minoan civlization. 5. Leonhardt continues, “Minoan scholarship generally agrees that the Minoans migrated from the Anatolian region**, which suggests an Altaic origin or influence.” after asserting in 1. above that “LinA does not resemble a known language.” and in 2. above, touting “the universally held belief that LinA is an Indo-European language.” Good God, can she make up her mind? Is it 1. 2. or 5.? 6. Leonhardt then cites research a century old! (again, italics mine) She states, “According to Munro, the origin of the Yamato culture is unknown but had arrived in a highly advanced state. The culture is notable for its grave goods–bronze arrowheads, bells, and halberds. The culture is also notable for its wheel-thrown pottery, which employed “restrained” decoration with “subdued color” [1908:4]. For confirmation of the general span of dates of his publications, see:
Munro was writing in 1908, when linguistic assumptions about Altaic languages were in their primitive infancy! Modern scholarship has all but refuted the assumptions about Altaic languages in vogue at the beginning of the twentieth century, i.e. 100 years ago! And he wrote in this very journal. 7. But the most damning evidence against her thesis comes from (italics mine): Paleoglot: How NOT to reconstruct a protolanguage
Paleoglot: ... So let's go through my cheeky list of important strategies that we can follow (using examples from the Tower of Babel project) if we want to isolate ourselves and be rejected by all universities around the world. 1. Use "phonemic wildcards" obsessively! Cast the net wider and you might catch something! The abuse of mathematical symbols like C, V, [a-z], (a/é/ö), etc. are an excellent way to make your idle conjecture look like a valid theory. It might be called "reconstruction by parentheses" since parentheses are either explicitly shown or hidden by a single variable. An example of this is *k`egVnV (claimed to be the Proto-Altaic word for "nine" in the Tower of Babel database). Obviously, if V represents all possible vowels in this proto-language and there are, say, ten of them possible in either position, then the fact that there are two wildcards in the same word means that the word represents a humungous, two-dimensional matrix of ONE HUNDRED possible permutations (10*10=100): *k`egana, *k`egena, *k`egina, *k`egüna, *k`egïna, etc. *k`egane, *k`egene, *k`egine, *k`egüne, *k`egïne, etc. *k`egani, *k`egeni, *k`egini, *k`egüni, *k`egïni, etc. *k`eganü, *k`egenü, *k`eginü, *k`egünü, *k`egïnü, etc. etc. language Since no single form is actually being posited when wildcards are present, any claim of regular correspondence by such a theorist can be easily identified as fraud. If such linguists can't take themselves seriously enough to hypothesize a structured and testable theory, why then should we take them seriously in turn? It is this very method, if you can call it that by any yardstick of scientific methodology that Ms. Leonhardt indulges in:
![]()
as we can see all too clearly from this chart of her derivations of Minoan words from so-called Altaic roots: To summarize, Ms. Leonhardt has seized herself in a web of self-contractions, severely outdated research and claims with respect to the authenticity of southern proto-Japanese as a so-called proto-Altaic language which cannot possibly stand the test of valid scientific methodology. I short, her pretensions that southern proto-Japanese is at the root of the Minoan language are just that, presentions, and egregious to boot. So what are the alternatives? What language family or class might the Minoan language fall into? We shall address that question head on in the next post.
Tag: hypotheses
Gretchen Leonhardt is up against some stiff competition from Urii Mosenkis concerning her so-called proto-Japanese origins of Minoan Linear A
Gretchen Leonhardt is up against some stiff competition from Urii Mosenkis concerning her so-called proto-Japanese origins of Minoan Linear A: Urii Mosenkis makes a very strong case for Minoan Linear A being proto-Greek, and he does it over and over, like clockwork. This includes his own completely different interpretation of Ms. Leonhardt’s highly contentious decipherment of kuro as so called proto-Japanese. I strongly suggest that Ms. Leonhardt read his articles. He is much more qualified than I am in Linear A (and, I contend, than Ms. Leonhardt as well), and I admit it without a shadow of hesitation. I am forced to revise my predictions about the partial decipherment of Minoan Linear A as I outlined them in my first article on Linear A, and I admit openly that Mosenkis is probably right, by and large. Ms. Leonhardt would do well to read all of his articles, as they flat-out contradict everything she claims about the so-called proto-Japanese origins of the Minoan language. I at least have the humility to lay down my cards when I am confronted with convincing evidence to the effect that my own partial decipherment of Minoan Linear A is defective, even though I have already reached many of the same conclusions as Mosenkis. Not that he would ever convince Ms. Leonhardt of the infallibility of her own dubious decipherments of Linear A tablets. I have a very great deal more to say about Ms. Leonhardt’s contentious claims to eventual fame with respect to her clearly flawed interpretations of Linear A tablets, and to drive my points home, I shall have occasion to cite Mosenkis whenever and wherever he contradicts her, and that is always. To view all of Mosenkis’ superbly conceived research papers, please visit his academia.edu account here:Here is a selective electronic bibliography of the highly qualified decipherments Mosenkis has made of several Minoan Linear A inscriptions: Electronic: Mosenkis, Urii. Flourishing of the Minoan Greek State in the Linear A Script 1700 – 14560 BCE. https://www.academia.edu/28708342/FLOURISHING_OF_THE_MINOAN_GREEK_STATE_IN_THE_LINEAR_A_SCRIPT_1700_1450_BCE Mosenkis, Urii. Graeco-Macedonian goddess as Minoan city queen. https://www.academia.edu/26194521/Graeco-Macedonian_goddess_as_Minoan_city_queen Mosenkis,Urii. Linear A-Homeric quasi-bilingual https://www.academia.edu/16242940/Linear_A-Homeric_quasi-bilingual Mosenkis, Urii. ‘Minoan-Greek’ Dialect: Morphology https://www.academia.edu/28433292/MINOAN_GREEK_DIALECT_MORPHOLOGY Mosenkis, Urii. Minoan Greek Farming in Linear A. https://www.academia.edu/27669709/MINOAN_GREEK_FARMING_IN_LINEAR_A_Iurii_Mosenkis Mosenkis, Urii. Minoan Greek hypothesis: A short historiography https://www.academia.edu/27772316/Minoan_Greek_hypothesis_A_short_historiography Mosenkis, Urii. Minoan Greek phonetics and orthography in Linear A https://www.academia.edu/27866235/Minoan_Greek_phonetics_and_orthography_in_Linear_A Mosenkis, Urii. Minoan-Greek Society in Linear A. https://www.academia.edu/27687555/MINOAN_GREEK_SOCIETY_IN_LINEAR_A Mosenkis, Urii. Researchers of Greek Linear A. https://www.academia.edu/31443689/Researchers_of_Greek_Linear_A Mosenkis, Urii. Rhea the Mother of Health in the Arkalokhori Script https://www.academia.edu/31471809/Rhea_the_Mother_of_Health_in_the_Arkalokhori_Script PS I came to almost exactly the same conclusions as Mosenkis re. this inscription, although my Greek translation is different. I wonder what Ms. Leonhardt has to say for herself in light of so many astonishingly insightful decipherments by Urii Mosenkis of a large number of Linear A tablets. I look forward to cogent and rational counter arguments on her part, which stand up to rigorous scientific criteria.
A ‘fairly accurate’ rendering of Minoan Linear A tablet HT 86a, according to Gretchen Leonhardt
A ‘fairly accurate’ rendering of Minoan Linear A tablet HT 86a, according to Gretchen Leonhardt:This Linear B tablet clearly deals with various crops, with the lead in crop being grains or wheat, just as one would expect on either a Mycenaean Linear B tablet. By the same token, there is no reason to suppose that a Minoan Linear A tablet dealing with crops would not deal first and foremost with grains and wheat. The units of measurements identified on this tablet accord with those tentatively tabulated by Andras Zeke on the
Ms. Gretchen Leonhardt of
has duly advised me that (and I quote) “your "recto" tablet is a fairly accurate rendering of HT 86a, but your "verso" tablet is an inaccurate rendering of HT 87.... ” She is of course entirely correct in informing me that the so-called verso side is not the same tablet at all, but is in fact, HT 87 (Haghia Triada). I am nevertheless astonished that she would accord me a fair degree of accuracy in my decipherment of HT 86 a, in view of the fact that (a) I do not even know what the Minoan language is; (b) Ms. Leonhardt claims to have conclusively deciphered the Minoan language as being proto-Japanese, categorically stating as she does that “overwhelming evidence keeps me steadfast in this view...”, a claim which I intend shortly to refute in no uncertain terms, by bringing to bear on it reasonable circumstantial, though not conclusive, evidence to the contrary and; (c) she concedes that my decipherment of HT 86 A is fairly accurate, in spite of the fact that I am apparently flailing in the dark, since I know nothing of the Minoan language. Yet if I am, how on earth did I manage to achieve even a fairly accurate decipherment, I have to ask her. Although Ms. Leonhardt claims that my knowledge of Linear A is “in its infancy” (as everyone’s, including her own, must of necessity be), as a historical philologist specializing in the decipherment of ancient syllabaries such as Linear A, Linear B and Linear C, and unlike Ms. Leonhardt along with numerous other researchers who purport to have definitely deciphered the Minoan language, I neither have ever made nor would ever make the rash and untenable claim that I have deciphered it, given the exiguous size of the lexical database with which we have to work. I have said as much over and over, as for instance in this citation from one of my own works to be published in the next year or so, and I quote: Conclusions concerning the many failed attempts at deciphering Minoan Linear A: The worst of all the pretensions of the authors of the aforementioned monographs and tractata are their untenable claims that they have in fact deciphered Minoan Linear A. How is it even remotely possible that these soi- disant decipherers of Minoan Linear A can claim to have discovered the so-called magic bullet in the guise of the proto-language upon which their decipherment has been based, when the proto-languages they invoke are soà wildly disparate? These decipherers have turned to a number of proto-languages, some of them Indo-European (such as proto-Greek and Proto-Slavic), others non proto-Indo-European, running the gamut from Uralic (proto-Finnish), proto-Niger Congo to proto-Semitic and Sumerian all the way through to proto-Altaic and proto-Japanese. While it is patently impossible that all of these proto-languages could be at the base of the Minoan language, it is nevertheless remotely conceivable that one of them just might be. But which one? Given the tangled mass of contradictions these so-called decipherments land us in, I am left with no alternative but to pronounce that none of these so-called proto-languages is liable to stand the test of linguistic verisimilitude. All of this leaves me with an uneasy feeling of déjà vu. Instead, I have adopted the unique approach of declaring that it does not matter what proto- language Minoan derives from, or for that matter, whether or not it, like modern Basque, is a language isolate, meaning a natural (spoken) language, ancient (dead) or modern (alive) with no demonstrable genealogical or genetic relationship with any other language whatsoever or alternatively, a language that has not been demonstrated to descend from an ancestor common with any other language in the world. (italics mine). and again: In an article of this nature, which is the first of its kind in the world ever to deal with the partial, but by no means definitive, decipherment of Minoan Linear A, I must of necessity focus on those Minoan Linear A terms which offer the greatest insight into the vocabulary of the language, but not the language itself. Anyone who dares claim he or she has “deciphered” the Minoan language is skating on very thin ice. Any attempt to decipher the Minoan language is severely trammelled by the incontestable fact that no one knows what the language is or even what language class it belongs to, if any.
Can super efficient quantum computers be of assistance at overcoming the seemingly insurmountable obstacles facing us in even a partial decipherment of Minoan Linear A?
Can super efficient quantum computers be of assistance at overcoming the seemingly insurmountable obstacles facing us in even a partial decipherment of Minoan Linear A? Quantum computers, as exemplified by the fantastically powerful D-Wave computer system invented by Canadians and now fully operational in 2017 (Click on their banner to jump to their site):most probably will prove to represent or in fact be a revolutionary development in the power and artificial intelligence of computers even now, as early as twenty-first century (say bu 2025 or so). The D-Wave computer is purported to be 10 million times faster than the most powerful supercomputer on earth! It was recently put to the test to solve an exceedingly complex protein synthesis model, and it did so 3,600 times faster than the the most powerful supercomputer on earth! That is a simply astonishing feat. In fact, quantum computers are purported to be able to solve seemingly impossible problems totally beyond the ken of the fastest supercomputer in the world. If this proves to be so, is it not conceivable that applying the smarts of a quantum computer such as the D-Wave might lead to real advances in the potential decipherment of Minoan Linear A? Take for instance my recent analysis and synopsis on the practically unimaginable formidable obstacles facing us in even beginning to get a handle on the syntax and semiotics of Minoan Linear A:
Is it not conceivable that a quantum computer such as the D-Wave might be able to at least make a dent in the potential decipherment, however partial, of Minoan Linear A? Or is it not? The question is not hypothetical. Proponents of the awesome power of quantum computers purport to be able to resolve supremely complex problems completely beyond the reach of even the most powerful of conventional digital supercomputers, as illustrated in this composite:
However, there may very well remain possibly insurmountable obstacles even for quantum computers in tackling a seemingly unsolvable problem as fractious as the decipherment of Minoan Linear A, however tentative. Some of the truly form obstacles that can and almost certainly shall practicably stand in the way of quantum computers being able to tackle this redoubtable challenge are: In spite of the astonishing claims that proponents of quantum computing make for its potential in solving intractable problems which even the most powerful supercomputers cannot even hope to address, what is the substance of these claims? This scenario needs to be logically parsed. 1. Just because quantum computers have unquestionably proven to be able to realize exponentially more efficient leaps in some (and I lay the emphasis on just some) activities, this does not necessarily mean that these quantum leaps imply a parallel or even corresponding quantum leap in AI (artificial intelligence) learning. 2. Even if such a corresponding quantum leap in AI (artificial intelligence) learning were to prove practicable, and in effect take place (possibly by 2025), what is meant by AI (artificial intelligence) or to take the proposition even further, what is implied by the admittedly vague term superintelligence? 3. Do advanced AI or superintelligence necessarily have to conform to or mimic human intelligence, or might they possibly constitute a discrete, self-contained phenomenon in and of themselves? 4. And if so (i.e. if 3), then would such a superintelligence (or 1 among many) be able to resolve problems, such as specifically, the potential decipherment, even if merely partial, of Minoan Linear A, (anywhere near) as well as human intelligence can? Or put another way, can quantum computing AI or superintelligent learning strategies mimic and even complement human learning strategies? 5. Or if they cannot (i.e. accomplish 4.), can they perhaps accomplish something along the same lines as human learning strategies just because they may in fact not actually resemble human intelligence? These are just a few of the factors we must absolutely take into consideration if we are to make any assumptions whatsoever over the potential for quantum computers, no matter how clever they may turn out to be and in what sense clever, to accomplish a task as mind-boggling as even the partial decipherment of Minoan Linear A. I shall have plenty more to say about the potentialities of quantum computing in the realm of diachronic linguist decipherment in future, but the introduction suffices for now.
Are there any proto-Greek words under the syllabogram NA in Minoan Linear A? It is doubtful.
Are there any proto-Greek words under the syllabogram NA in Minoan Linear A? It is doubtful.The 3 words of putative proto-Greek origin in Minoan Linear A I have flagged under the syllabogram NA are all doubtful. So I cannot in good conscience add them to the revised Glossary of Minoan Linear A words.
Minoan Linear A Reza Adureza Tereza. Do they measure up? PART 1 = reza
Minoan Linear A Reza Adureza Tereza. Do they measure up? PART 1 = reza The problem of generic versus specific measurement: Minoan Linear A reza adureza tereza. Do they measure up? PART 1 = reza... Soon after I first translated the Minoan Linear A words reza, adureza and tereza, it swiftly dawned on me that I had made a fundamental critical error in my decipherments. It is this. Based on the operation that cross-correlation between Minoan Linear A and Mycenaean Linear B assumes that both scripts fundamentally centre on inventories alone, I first turned to Linear B to test this hypothesis. Linear B and measurement: Whenever the Linear B scribes inscribed tablets relating specifically to measurement (and that was on the vast majority of Linear B tablets dealing with commodities), they never used the word measurement in and of itself. Why, you ask? The answer, at least to the scribes, was transparent. The Linear B scribes, as we know all too well from their extremely frequent use of supersyllabograms to save precious space on what were very small tablets (usually 15 cm. wide, rarely more than 30), would almost certainly not have written out the word measurement on tablets actually providing the figures and totals for measurement, since it was all to obvious to them (though not us in the the twenty-first century!) that if the total figures and totals of measured commodities are tallied on any particular tablet, then why on earth say “measurement” of... when it was painfully obvious to them (the scribes) that this was what the tablet in question was all about? This practice is identical to the use of single syllabogram supersyllabograms to replace entire words or phrases on Linear B tablets, again for precisely the same reason, so save all the precious space they could on those tiny tablets. Which is exactly what they did. That leaves us with the obvious question, if the Linear B scribes did not use the implicit but obvious word “measurement”, then what word(s) would they have used for measurement? The answer is implicit in the question: they used words for precise units of measurement, not for measurement in its generic sense. They would have had to use precise units of measurement for commodities such as specific crops, military paraphernalia, vessels, olive oil and wine; otherwise who on earth in the Knossian or Mycenaean palace administration would have known what the total amounts of specific items or commodities added up to? The way the Linear B scribes dealt with this conundrum was to devise a fully standardized, formulaic system of measuring specific units of dry and wet measurement, as illustrated here, and as initially calculated with amazing precision by Andras Zeke of the Minoan Language Blog back in 2012:Specific measurement in Minoan Linear A: And so I have come around to reasoning that what applies to the designation of specific measurement in Mycenaean Linear B must also apply to its forbear, Minoan Linear A, in some form or another. Unfortunately, my extensive online research rummaging for Minoan Linear A words (as opposed to units of measurement) came up cold. So what then? Did the Minoan Linear A scribes employ precise words for specific units of measurement? My believe is that in fact they did. Why so? Only recently, I quickly noticed that the words reza, adureza and tereza appeared on Minoan Linear A tablets, all of which dealt with measurement. Co-incidence? I think not. Let us begin with the simple word reza. If it is indeed the root word for its variants adureza and tereza, it stands to reason that it applies to the simplest unit(s) of measurement, as illustrated here on Linear B tablet Haghia Triada HT 31 (verso):
I would also like to stress that so far I have only scratched the surface of the problems inherent to at least the partial, but accurate, decipherment of certain Minoan Linear B terms (up to a potential vocabulary of 100+ words), in light of the fact that I have been painstakingly mulling over the hypotheses, criteria and a specific methodology which can successfully be applied to the prudent decipherment of at least a subset of Minoan Linear A. And to my satisfaction, I have been able to extrapolate these hypotheses, criteria and a specific methodology which we can practically apply to said decipherment. I shall be posting these principles very shortly here on Linear B, Knossos and Mycenae. I guarantee they will be real eye openers to past, researchers in the potential decipherment of Minoan Linear A, all of whom have overlooked some of the critical factors relative to its decipherment, which are more than likely to lead to at least a real measure of success. We shall soon see. It is extremely important to emphasize that if adureza and teresa are compounds of reza, compound Minoan Linear A words modify their meanings from their simple root word, in this case, reza, by adding prefixes, not suffixes, which would explain why adureza, with the prefix adu = “dry” means a specific unit of dry measurement and te for tereza refers to a specific unit of “wet” measurement, not just “measurement” (reza). It will be absolutely necessary to test this tentative hypothesis against other Minoan Linear A word clusters composed of (a) a root root and (b) compound terms composed of the root + 1 or more prefixes, not suffixes, to determine whether it holds up to continued scrutiny. If it does, we are surely onto something big! For adureza and tereza, see the next two posts.
Linear B tablet KN 929 F q 01 with 3 supersyllabograms! ???
Linear B tablet KN 929 F q 01 with 3 supersyllabograms! ??? Supersyllabograms en masse? Is this possible on a single tablet? You can bet on it!Linear B tablet KN 929 F q 01,
with 3 supersyllabograms on it, is a perfect example of this relatively frequent phenomenon on Linear B tablets, regardless of provenance (Knossos, Pylos etc.). On this tablet alone, there are no fewer than 3 supersyllabograms, KI= kitimena ktoina = “a settled plot of land”, PE = periqoro = “(in) a sheep pen” and O = onato = “a lease field”. This is where decipherment can get tricky. At first sight, it looks rather peculiar that the scribe has positioned the first two supersyllabograms, KI and PE before the ideogram for “rams”, but without mentioning the number of rams “in sheep pens on a settled plot of land”, with this statement followed by yet another supersyllabogram, O = onato = “a lease field”, but only this time with the number of rams being specified = 80+. I say 80+ because the right hand side of this tablet is truncated, and so the number of rams could run anywhere from 80 to 89. But I suspect that, in spite of truncation, the number of rams is probably just 80. The problem remains, how do we concatenate the last supersyllabogram O with the previous two? The only way this can be logically effected is by making the first two SSYLS, KI & PE, dependent on third, O... which is the scribe’s intention. This means that all of the sheep tabulated here are “in sheep pens on a settled plot of land”... “on a lease field” . In other words, all 80 of these sheep are being kept in a single sheep pen on only one of the settled plots of land on this lease field. There is no mention of the rest of the sheep on this lease field. But you can bet there are others. The point is that the scribe is explicitly drawing our attention to these 80 sheep alone. The tablet is extremely precise. That is the way of the best inventories. The more precise, the better.
Just added to my academia.edu page, Translation of the Introduction to Book II of the Iliad, and its Profound Implications in the Regressive-Progressive Reconstruction of Unattested, Derived (D) Mycenaean Greek Vocabulary and Grammar, here:
Just added to my academia.edu page, Translation of the Introduction to Book II of the Iliad, and its Profound Implications in the Regressive-Progressive Reconstruction of Unattested, Derived (D) Mycenaean Greek Vocabulary and Grammar, here:This is the first of a series of several papers I shall be publishing this year and next (2016) on my hypothesis underpinning the theoretical and proposed actual links between the archaic Greek of Book II of the Iliad by Homer, and in particular of the Catalogue of Ships (lines 459-815). These papers are of extreme significance to the methodology, process and procedure of regressive extrapolation of Mycenaean Greek vocabulary or grammatical constructs derived from the most archaic Greek in the Iliad, considered by many researchers to be an in)direct offshoot of Mycenaean Greek itself. Vocabulary or grammatical constructs thus derived are then progressively applied to reconstruct parallel elements missing from any attested Linear B sources regardless. I cannot stress too much the extreme significance of this particular line of research I am pursuing in the reconstruction of numerous elements (possibly even into the hundreds) of Mycenaean Greek derived from these sections alone of the Iliad. Richard
KEY POST! Introduction to the Complete Bibliography of 138 Citations for “The Rôle of Supersyllabograms in Mycenaean Linear B”
Introduction to the Complete Bibliography of 138 Citations for “The Rôle of Supersyllabograms in Mycenaean Linear B”, Presentation by Richard Vallance Janke at the 2015 Conference in the Pultusk Academy of the Humanities, Pultusk, Poland, June 30-July 2, 2015. In the next 2 posts, I shall present my exhaustive bibliography of 138 items (79 citations in each of the two parts) for the talk I shall be giving on “The Rôle of Supersyllabograms in Mycenaean Linear B” at the 2015 Conference, “Thinking in Symbols” in the Pultusk Academy of the Humanities, Pultusk, Poland, June 30-July 2, 2015. It is so exhaustive that I doubt I have missed any sources of any significance to the topic at hand. Of course, the paper of the talk itself cannot be released at this time, as it is still under wraps. Certain researchers past and present, above all Marie-Louise Nosch, have made significant contributions towards the realization of the General Theory of Supersyllabograms which I have just finalized this year, after a year of intensive research (spring 2014 – spring 2015). Previous researchers have sometimes come right up to the edge of a general theory correlating the single or multiple syllabograms they usually designate as “adjuncts” or “endograms” to the Linear B ideograms to which they are “surcharged” (i.e. attached), and which they invariably qualify. But all of these definitions are lacking in one sense or another, for the following reasons: 1. Although designated as (mere) “adjuncts” to the ideograms they invariably qualify, these associative single or multiple syllabograms (up to a maximum of 5!) are far more than that. Standing in as first-syllable abbreviations for words and even entire phrases in Mycenaean Greek, they play an absolutely critical rôle in significantly qualifying the ideograms to which they are attached, all the more so when the tablet on which they are found contains no text whatsoever, but only ideograms with these so-called “adjuncts”. But since these “adjuncts” invariably replace either Mycenaean words or (very often) entire phrases, they cannot be relegated to the status of simple adjuncts. In far too many instances, these single syllabograms encompass so much text that their inherent meaning as such turns out to be much more comprehensive and significant than that of the ideograms to which they are presumably attached. In other words, the single syllabogram(s) embodies/embody so much more than what would have otherwise been nothing but wasteful discursive text. So it appears that we should expediently and practically refer to as the ideogram as the adjunct, rather than the other way around. On tablets with no text whatsoever and with 3 or more syllabograms performing this function, it is more than apparent that all of the single syllabograms functioning as the first syllable of a Mycenaean Greek word or an entire phrase replace so much discursive text that they literally cut down the amount of space used on the tablet in question by as much as two-thirds! Since the Linear B scribes at Knossos and Pylos in particular were real sticklers for saving as much space as they possibly could on what were (and are) extremely small extant tablets (rarely more than 15 cm. or 6 inches wide), they resorted to this stratagem so often (on at least 23% of the Linear B tablets at Knossos) that the practice is, if anything, of far greater importance to an accurate decipherment of those tablets on which they appear than was previously thought. It is for this reason that I have come to designate syllabograms playing this rôle as supersyllabograms, and certainly not as mere “adjuncts” or “endograms”, since that is patently what they are – supersyllabograms. 2. The designation of supersyllabograms as “endograms” is extremely misleading and quite inaccurate, since as many of these supersyllabograms precede as follow the ideograms to which they are attached. So “endograms” account for only half of supersyllabograms at best. Besides, what are we to call the supersyllabograms which precede the ideograms to which they are attached? Has anyone thought of that or even mentioned it in previous research? Not that I have ever seen, and I have read every single document (monographs, journal articles and articles in every past conference) I could lay my hands on. The reason for this lacuna is clear enough. Past researchers have focused solely on “adjuncts” or “endograms” related solely to the field of research in Mycenaean Linear B which is of primary and frequently exclusive interest to themselves. Even Marie-Louise Nosch, who has done an astonishing amount of truly remarkable research in this area, has restricted herself to the textiles sector of the Minoan-Mycenaean economy, as that is her primary field of interest. Fair enough. Given this scenario, it appears to me that researchers past and present have been focusing exclusively on the trees or even sometimes, as with Marie-Louise Nosch, on whole clearings in forest. But none have ever concentrated on the entire forest, at least until last year, when I myself decided to ransack every single syllabogram on some 3,000 tablets (not fragments) from Knossos, in order to hypothesize, if at all possible, a general pattern to the use of supersyllabograms with ideograms. I succeeded beyond my wildest dreams. So far, I have discovered that at least 33 of the 61 syllabograms plus one of the homophones (“rai” for saffron) frequently function as supersyllabograms. Under the circumstances, and given that so many scribes so often resorted to this strategy, I soon enough concluded that it was not only a standard convention in the compilation of some 700 tablets at Knossos, but that the supersyllabograms found on these tablets were almost invariably formulaic codes. And in ancient Greek – witness Homer alone - any practice which was both conventional and formulaic was always deliberate. No-one ever resorts to such strategies in any language, unless they have abundant reason to do so. This is all the more true for the practices the Linear B scribes routinely ascribed to, given that they would do absolutely anything, if they possibly could, to save precious space on their tiny clay tablets. This too is another crucial factor past researchers have overlooked. Linear B scribes only recorded information which was absolutely essential to the precise compilation of what were (and are) after all statistical accounts and inventories. We can take the far-reaching consequences and implications of this conclusion even further. Have you ever seen a modern-day inventory which resorts to similar tactics to conserve precious space and to make the inventory as clear, precise and accurate as possible? Of course you have. As illustrated in the following two examples, the most efficient of modern inventories resort to the same tactics, the formulaic use of code abbreviations as substitutes for wasteful discursive text with predictable frequency – which is almost always: Click to ENLARGE each one with its relevant notes![]()
In other words, just as abbreviations serve as default codes in modern inventories, supersyllabograms function pretty much the same way on the Linear B tablets. Supersyllabograms are in fact inventory codes for the Mycenaean Linear B words or entire phrases they replace. This revelation surely substantiates the claim I am now going to make: the Linear B scribes were far ahead of their time in the compilation of inventories and statistics. No other ancient language, including classical Greek and even Latin, came remotely close to this extremely advanced practice the Linear scribes so brilliantly and consciously contrived for their astonishing ability to create practical templates they consistently applied to inventorial management. And no-one until the Italian bankers in Renaissance was to revive the practice with equal skill. As for the standard practices of the Linear B scribal inventories, they are so remarkably alike modern 20th. & 20st. Century practices that it is uncanny. 3. But there is more. Why previous researchers have not drawn attention to the fact that many supersyllabograms, especially in the field of textiles, neither precede nor follow the ideograms they qualify, but are almost invariably inside them, is beyond me. Once again, no one in any language resorts to any stratagem without solid practical and even logical reason(s). Such is the case with the textile “intragrams”, as opposed to “exograms” in Linear B, the latter of which invariably qualify pretty much all ideograms in the field of agriculture. Again, this raises the critical, hardly hypothetical, question, why. And again, there are substantive and strictly functional reasons why the Linear B scribes made this critical distinction – because they knew they had to. Supersyllabograms functioning as “exograms” are always associative, while those operating as “intragrams” are invariably attributive. The Linear B scribes made this fundamental distinction between the two sub-classes of supersyllabograms for the simple reason that they, as a guild, knew perfectly well what the operative distinction was which each of these types of supersyllabograms played on the tablets on which they were inscribed. The talk I am giving at the Conference in Pultusk between June 30 and July 2 2015 will make this perfectly clear. 4. I have no objection to the designation “surcharged” for “exograms” as supersyllabograms, because they are not only literally surcharged onto the ideograms with which they are always associated, they also figuratively surcharge the meaning(s) of these ideograms, in a sense somewhat akin to super-charged gasoline or petrol which beefs up engine performance in cars - or by symbolic association, something along those lines. But I am forced to object to the designation of “intragrams” as surcharged in the textiles sector of the Minoan-Mycenaean economies, for the obvious reason that they are both literally and figuratively not surcharged at all. Again, the scribes never resorted to “intragrams”, unless they were absolutely critical to an actual attribute, whenever required in a particular case, such as the frequent designation of colour for textiles. Ask yourselves, why would any scribe in his right mind write out the full name of the default colour white for linen, when he did not have to? He simply would not. On the other hand, the Linear B scribes did make use of an attributive supersyllabogram when they knew perfectly well that it was critical to the economic class status of the cloth so designated. For instance, purple cloth, designated by the supersyllabogram PU for Mycenaean Linear B pupureyo – a royal colour par excellence – was much more refined and far more expensive than the heavier and coarser plain white linen cloth (rino) spun for the hoi polloi (the lower classes). So they had to mention that for the sake of the “wanaka” or King (of Knossos or Mycenae) to whom this distinction was all too important, given that neither he nor his Queen no any of the princes royal would ever be caught dead wearing cheap cloth. There is much more to this than meets the eye, as I shall clearly illustrate in the book, The Decipherment of Supersyllabograms in Linear B, which is to appear sometime in 2016, if all goes well. I would be truly remiss were I not to acknowledge the major contributions the French researcher, Marie-Louise Nosch, whom I have cited 15 times (!) in my bibliography, has made to fundamentally accurate definitions of supersyllabograms in the textile sector of the Minoan-Mycenaean economy. Although I happened upon all of her astonishingly insightful research articles only after I had deciphered 32 of the 34 supersyllabograms (the other two being beyond me, as well as her), the truly accurate and intrinsically logical conclusions she came to on her own back up my conclusions on the meanings of practically all the intragrams for textiles almost to the letter. This amazing co-incidence, if that is merely what it is, serves as solid circumstantial collateral evidence to substantiate my Theory of Supersyllabograms. Co-incidence? I rather doubt that. It is a given that researchers in any scientific field tend to strike their bearings in the same general direction in any age, including our own. Like Odysseus, we are all heading for the same shore. The most convincing conclusions which will eventually be drawn from the research we are all sharing in now are yet in the offing. But in my eyes one thing is certain. Everything we researchers in Mycenaean Linear B, as a community, are aiming for now is bound to make a ground-breaking, perhaps even profound, contribution in the near future to make the further decipherment of Linear B considerably much more accurate than any we have seen to date. The Bibliography to follow in two parts (1-69 & 70-138) in the next two posts. ADDENDUM: I shall be publishing this post & the next two in academia.edu very soon, prior to my presentation at the Conference in Pultusk, Poland, June 30 - July 2, 2015. Richard
Alan Turing & Michael Ventris: a Comparison of their Handwriting
Alan Turing & Michael Ventris: a Comparison of their Handwriting I have always been deeply fascinated by Alan Turing and Michael Ventris alike, and for obvious reasons. Primarily, these are two geniuses cut from pretty much the same cloth. The one, Alan Turing, was a cryptologist who lead the team at Bletchley Park, England, during World War II in deciphering the German military’s Enigma Code, while the other, Michael Ventris, an architect by profession, and a decipherment expert by choice, deciphered Mycenaean Linear B in 1952. Here are their portraits. Click on each one to ENLARGE:![]()
Having just recently watched the splendid movie, The Imitation Game, with great pleasure and with an eye to learning as much more as I possibly could about one of my two heroes (Alan Turing), I decided to embark on an odyssey to discover more about each of these geniuses of the twentieth century. I begin my investigation of their lives, their personalities and their astounding achievements with a comparison of their handwriting. I was really curious to see whether there was anything in common with their handwriting, however you wish to approach it. It takes a graphologist, a specialist in handwriting analysis, to make any real sense of such a comparison. But for my own reasons, which pertain to a better understanding of the personalities and accomplishments of both of my heroes, I would like to make a few observations of my own on their handwriting, however amateurish. Here we have samples of their handwriting, first that of Alan Turing: Click to ENLARGE
and secondly, that of Michael Ventris: Click to ENLARGE
A few personal observations: Scanning through the samples of their handwriting, I of course was looking for patterns, if any could be found. I think I found a few which may prove of some interest to many of you who visit our blog, whether you be an aficionado or expert in graphology, cryptography, the decipherment of ancient language scripts or perhaps someone just interested in writing, codes, computer languages or anything of a similar ilk. Horizontal and Vertical Strokes: 1. The first thing I noticed were the similarities and differences between the way each of our geniuses wrote the word, “the”. While the manner in which each of them writes “the” is obviously different, what strikes me is that in both cases, the letter “t” is firmly stroked in both the vertical and horizontal planes. The second thing that struck me was that both Turing and Ventris wrote the horizontal t bar with an emphatic stroke that appears, at least to me, to betray the workings of a mathematically oriented mind. In effect, their “t”s are strikingly similar. But this observation in and of itself is not enough to point to anything remotely conclusive. 2. However, if we can observe the same decisive vertical (—) and horizontal (|) strokes in other letter formations, there might be something to this. Observation of Alan Turing’s lower-case “l” reveals that it is remarkably similar to that of Michael Ventris, although the Ventris “l” is always a single decisive stroke, with no loop in it, whereas Turing waffles between the single stroke and the open loop “l”. While their “f”s look very unalike at first glance, once again, that decisive horizontal stroke makes its appearance. Yet again, in the letter “b”, though Turing has it closed and Ventris has it open, the decisive stroke, in this case vertical, re-appears. So I am fairly convinced we have something here indicative of their mathematical genius. Only a graphologist would be in a position to forward this observation as a hypothesis. Circular and Semi-Circular Strokes: 3. Observing now the manner in which each individual writes curves (i.e. circular and semi-circular strokes), upon examining their letter “s”, we discover that both of them write “s” almost exactly alike! The most striking thing about the way in which they both write “s” is that they flatten out the curves in such a manner that they appear almost linear. The one difference I noticed turns out to be Alan Turing’s more decisive slant in his “s”, but that suggests to me that, if anything, his penchant for mathematical thought processes is even more marked than that of Michael Ventris. It is merely a difference in emphasis rather than in kind. In other words, the difference is just a secondary trait, over-ridden by the primary characteristic of the semi-circle flattened almost to the linear. But once again, we have to ask ourselves, does this handwriting trait re-appear in other letters consisting in whole or in part of various avatars of the circle and semi-circle? 4. Let’s see. Turning to the letter “b”, we notice right away that the almost complete circle in this letter appears strikingly similar in both writers. This observation serves to reinforce our previous one, where we drew attention to the remarkable similarities in the linear characteristics of the same letter. Their “c”s are almost identical. However, in the case of the vowel “a”, while the left side looks very similar, Turing always ends his “a”s with a curve, whereas the same letter as Ventris writes it terminates with another of those decisive strokes, this time vertically. So in this instance, it is Ventris who resorts to the more mathematical stoke, not Turing. Six of one, half a dozen of the other. Overall Observations: While the handwriting styles of Alan Turing and Michael Ventris do not look very much alike when we take a look, prime facie, at a complete sample overall, in toto, closer examination reveals a number of striking similarities, all of them geometrical, arising from the disposition of linear strokes (horizontal & vertical) and from circular and semi-circular strokes. In both cases, the handwriting of each of these individual geniuses gives a real sense of the mathematical and logical bent of their intellects. Or at least as it appears to me. Here the old saying of not being able to see the forest for the trees is reversed. If we merely look at the forest alone, i.e. the complete sample of the handwriting of either Alan Turing or Michael Ventris, without zeroing in on particular characteristics (the trees), we miss the salient traits which circumscribe their less obvious, but notable similarities. General observation of any phenomenon, let alone handwriting, without taking redundant, recurring specific prime characteristics squarely into account, inexorably leads to false conclusions. Yet, for all of this, and in spite of the apparently convincing explicit observations I have made on the handwriting styles of Alan Turing and Michael Ventris, I am no graphologist, so it is probably best we take what I say with a grain of salt. Still, the exercise was worth my trouble. I am never one to pass up such a challenge. Be it as it may, I sincerely believe that a full-fledged professional graphological analysis of the handwriting of our two genius decipherers is bound to reveal something revelatory of the very process of decipherment itself, as a mental and cognitive construct. I leave it to you, professional graphologists. Of course, this very premise can be extrapolated and generalized to any field of research, linguistic, technological or scientific, let alone the decipherment of military codes or of ancient language scripts. Many more fascinating posts on the lives and achievements of Alan Turing and Michael Ventris to come! Richard
An Easy Guide to Learning Arcado-Cypriot Linear C & I mean easy!
An Easy Guide to Learning Arcado-Cypriot Linear C & I mean easy!: Click to ENLARGEIf any of you out there have already mastered either Minoan Linear A or Mycenaean Linear B or both, Arcado-Cypriot Linear C is likely to come as a bit of a shock. Although the phonetic values of the syllabograms in Linear C are identical to their Linear B counterparts, with very few exceptions, the appearance of Linear C syllabograms is almost always completely at odds with their Linear B counterparts, again with very few exceptions. If this sounds confusing, allow me to elucidate. A: Appearance of Linear B & Linear C Syllabograms. Linear C syllabograms look like this. If you already know Linear B, you are probably saying to yourself, What a mess!, possibly even aloud. I can scarcely blame you. But courage, courage, all is not lost. Far from it. Click to ENLARGE:
Only the following syllabograms look (almost) alike in both Mycenaean Linear B & Arcado-Cypriot Linear C [see (a) below]: NA PA TA * SE * LO * PO * * There is a slight difference between those syllabograms marked with an asterisk * DA in Linear B is identical to TA in Linear C because Linear C has no D + vowel series, but uses the T + vowel series instead. SE in Linear B has 3 vertical strokes, whereas in Linear C it has only 2. RO in Linear B is identical to LO in Linear C. While Linear C has both and R + vowel series, it uses the L + vowel series as the equivalent of the Linear B R series. PO stands vertically in Linear B, but is slanted about 30 degrees to the right in Linear C. All other syllabograms in these two syllabaries are completely dissimilar; so you might think you are on your own to learn the rest of them in Linear C. But in fact, you are not. I can help a lot. See below, after the section on the Phonetic Values of Linear B & Linear C Syllabograms. B: Phonetic Values of Mycenaean Linear B & Arcado-Cypriot Linear C Syllabograms: Here the reverse scenario applies. Once you have mastered all of the Linear C syllabograms by their appearance, you can rest pretty much assured that the phonetic values of almost all syllabograms in both syllabaries are identical, with very few exceptions. Even in those instances where their phonetic values appear not to be identical, they are in fact identical, for all intents and purposes. This is because the ancient Greek dialects were notorious for wide variations in pronunciation, ergo in orthography. Anyone at all familiar with ancient Greek dialects can tell you that the pronunciation and spelling of an identical document, were there ever any such beast, would vary markedly from, say, Arcado-Cypriot to Dorian to Attic alphabetic. I can hear some of you protest, “What do you mean, the Arcado-Cypriot alphabet? I thought the script for Arcado-Cypriot was the syllabary Linear C.” You would be only half right. In fact, the Arcadians and Cypriots wrote their documents either in Linear or in their version of the ancient Greek alphabet, or in both at the same time. This is the case with the famous Idalion decree, composed in the 5th. Century BCE: Click to ENLARGE
The series of syllabograms beginning with the consonant R + any of the vowels A E I O & U is present in Mycenaean Linear B. However, the series of syllabograms beginning with the consonant L + any of the vowels A E I O & U is entirely absent from Mycenaean Linear B, while Arcado-Cypriot Linear C has a series of syllabograms for both of the semi-consonants L & R. It rather looks like the Arcadians & Cypriots had already made the clear distinction between the semi-vowels L & R, firmly established and in place with the advent of the earliest form of the ancient Greek alphabet, which sported separate semi-vowels for L & R. Likewise, the series of syllabograms beginning with the consonant Q + any of the vowels A E I & O is present in Mycenaean Linear B, but entirely absent from Arcado-Cypriot Linear C. Conversely, the series of syllabograms beginning with the consonant X + the vowels A or E (XA & XE) is entirely absent from in Mycenaean Linear B, but present in Arcado-Cypriot Linear C. For the extremely significant socio-cultural linguistic explanation for this apparent paradox (I say, apparent, because it is in fact unreal), we shall have to defer to the next post. WARNING! Always be on your guard never to confuse Linear B & Linear C syllabograms which look (almost exactly) alike – the sole exceptions being NA PA TA SE LO & PO, since you can be sure that their phonetic values are completely at odds. Various strategies you can resort to in order to master Linear C fast! (a) The Linear B & Linear C syllabograms NA PA TE SE LO & PO are virtually the same, both in appearance and in pronunciation.
(b) Taking advantage of the real or fortuitous resemblance of several syllabograms to one another & (c) Geometric Clustering: Click to ENLARGEWhat is really astonishing is that the similarities between the syllabograms on the second line & their geometric clustering on the third are identical! So no matter which approach you adopt (b) or (c) or both for at least these syllabograms, you are a winner. Failing these approaches, try (d) Mnemonics: For instance, we could imagine that RO is a ROpe, PE = Don’t PEster me!, SA = SAve $, TO is TOFu etc. or we could even resort to (e) Imagery! For instance, we could imagine that A E & I are a series of stars, RI NI & KE all look like variations on the letter E, that LE is the symbol for infinity, WE is an iron bar etc. For Mnemonics & Imagery, I am not suggesting that you follow my own arbitrary interpretations, except perhaps for LE, which is transparent. Take your imagination where it leads you. Finally (f) the really great news is that the Linear C syllabary abandoned homophones, logograms and ideograms, doing away with them lock-stock-and-barrel. This should come as no surprise to anyone familiar with the Minoan Linear A & Mycenaean Linear B syllabaries. The first had so many syllabograms, homophones, logograms and ideograms that it can be a real pain in the butt to learn Linear A. Mycenaean Linear B greatly simplified the entire mess, reducing the number and complexity of syllabograms & homophones, but unfortunately retaining well over a hundred logograms and ideograms, which are equally a pain in the you know what. In other words, the process of greater and greater simplication was evolutionary. This phenomenon is extremely common across the spectrum of world languages. What the Linear C scribes agreed upon, the complete elimination of anything but syllabograms, was the last & greatest evolutionary phase in the development of the Minoan-Greek syllabaries before the Greeks finally reduced even Linear C to its own variable alphabet of some 24-27 letters, depending on the dialect. But even the 3 syllabaries, Linear A, B & C, all had the 5 vowels, A E I O & U, which already gave them an enormous advantage over almost all other ancient scripts, none of which had vowels, with the sole exception of Sanskrit, as far as I know. That alone was quite an achievement. If you have not yet mastered the Linear B syllabary, it goes without saying that all of these techniques can be applied to it. The same goes for the Minoan Linear A syllabary, though perhaps to a lesser extent. The Real Potential for Extrapolation of these Principles to Learning any Script: Moreover, at the most general level for learning linguistic scripts, ancient or modern, whether they be based on pictographs, ideograms alone (as with some Oriental languages, such as Chinese, Japanese & Korean, at least when they resorted to the Kanji script), or any combination of ideograms, logograms & syllabograms (all three not necessarily being present) or even alphabetic, they will almost certainly stand the test of the practical validity of any or all of these approaches for learning any such script. I have to wonder whether or not most linguists have ever considered the practical implications of the combined application of all of these principles, at least theoretically. Allow me to conclude with this telling observation. Children especially, even from the age of 2 & a half to 3 years old, would be especially receptive to all of these techniques, which would ensure a rapid assimilation of any script, even something as simple as an alphabet of anywhere from 24 letters (Italian) to Russian Cyrillic (33 letters), as I shall clearly demonstrate with both the modern Greek & Latin alphabet a little later this month. PS. If any of you are wondering, as I am sure many of you who are familiar with our blog must be, I have an extremely associative, cross-correlative mind, a rather commonplace phenomenon among polyglot linguists, such as myself. In fact, my thinking can run in several directions, by which I mean I frequently process one set of cross-correlative associations, only to consider another and another, each in quite different directions from the previous. If that sounds like something Michael Ventris did, it is because that is precisely what he did to decipher almost all of Mycenaean Linear B - almost all, but not quite. As for the remaining 10 % or so which has so far defied decipherment, I promise you you are in for a great surprise very soon, perhaps as early as the spring of 2015, when my research colleague, Rita Roberts, and I shall be publishing an in-depth research paper in PDF on the Internet - a study which is to announce a major breakthrough in the further decipherment of Linear B. Those of you who frequent this blog on a regular basis already know what we are up to. As for those of you who are not regular visitors, if you read all the posts under the rubric, Supersyllabograms (at the top of this page), you are going to find out anyway. Richard
You must be logged in to post a comment.