```
3 impressive photos of the Bull Fresco Portico Knossos, taken by Richard while he was there on May 1 2012:
```

# Tag: circles

## Comprehensive Architectural Lexicon, Knossos & Mycenae (Part A)

Comprehensive Architectural Lexicon, Knossos & Mycenae (Part A): Since I have been posting scores of photos of the magnificent Third Palace of Knossos, Late Minoan IIIb (ca. 1450 BCE), I have decided to compile an Architectural Lexicon in 2 parts. This is the first. The vocabulary is relatively straightforward, with a few minor exceptions: 1Decorated with spirals. The Minoans at Knossos and the Mycenaeans went crazy decorating many of their lovely frescoes and their walls with spirals. 2Bathtub. You might be wondering, why on earth would I add this word?... because bathtubs were an integral part of room architecture, i.e. of the bathroom. The people of Knossos in particular were very clean. They even had an advanced hydraulics driven piping and drainage system, the likes of which was never again repeated until ancient Rome. And the Romans, unlike the Minoans at Knossos, made the terrible mistake of constructing their pipes of lead, leading to widespread lead poisoning. The Minoans used ceramics... nice and clean. Clever. No surprise there. 3Mantles!Isn’t that what people wear? Well, yes, but they could also be used to decorate the top of windows, I imagine. Or maybe it is just my imagination. Correct me if I am wrong. 4 The worderepato, which is the equivalent of the Homeric Greekelefantosnevermeans ivory either in Mycenaean or in Homeric Greek! 5Crocus? - of course! ... used all over the place in the lovely frescoes! 6Circleswere likewise universal on the building friezes. And with good reason. They are geometrically perfect, a typically Greek characteristic.

## Knossos building with perfect circular rosettes on its frieze!

Knossos building with perfect circular rosettes on its frieze! More of the same!

## Archaeology, Anthropology and Interstellar Communication 2: Relevant Photography and Images

Archaeology, Anthropology and Interstellar Communication 2: Relevant Photography and Images Here we see some photographs and images relevant to our translation of Richard Saint-Gelais' brilliant article,Archaeology, Anthropology and Interstellar Communication 2 research... and some not so relevant! First off, we have here a chart illustrating thee extreme geometric simplicity or more to the point, theGeometric Economyof Mycenaean Greek, which may indeed make it susceptible or even suitable to extraterrestrial communication with other intelligent beings, if we accept the “fact” that we ourselves are “intelligent”... a point which is open to serious debate! The Geometric Economy of Mycenaean Linear B: Moreover, Linear B's closest cousin, Arcado-Cypriot Linear C, which followed closely on the heels of Linear B, once it fell out of use with the fall of Mycenae ca. 1200 BCE, and which lasted continually from ca. 1100-400 BCE (!), is just as remarkable for its Geometric Economy as Linear B, and could equally serve the same capacity as a vehicle for extraterrestrial communication. The Geometric Economy of Arcado-Cypriot Linear C: On the other hand, nothing could be more ridiculous than the Voyager 1 satellite, launched on Sept. 5 1977, and now hurtling God knows where just outside the confines of our Solar System. Apart from the fact that a mechanical contraption such as this would (and will!) take hundreds of thousands of years to get anywhere at all, what is the point? Moreover, the premises upon which its means of communication with so-called extraterrestrials are based are so absurdly unsound as to beg credence. For instance, what extraterrestrial beings in their right minds (assuming they have minds like us) could conceivably recognize those ridiculous images of a naked man and woman?... unless they were even remotely similar to us physiologically... a likelihood that is about as realistic as winning a lottery of a trillion dollars. And that is just scratching the surface, as we shall discover to our great amusement when I eventually publish my article on Prof. Saint-Gelais' own research. There follow here a few images relative to the Voyager 1 probe which are liable to make you LOL.

## The application of geometric co-ordinate analysis (GCA) to parsing scribal hands: Part A: Cuneiform

The application of(GCA) to parsing scribal hands: Part A: Cuneiformgeometric co-ordinate analysisIntroduction:I propose to demonstrate how geometric co-ordinate analysis of cuneiform, the Edwin-Smith hieroglyphic papyrus (ca. 1600 BCE), Minoan Linear A, Mycenaean Linear B and Arcado-Cypriot Linear C can confirm, isolate and identify with great precision the X Y co-ordinates of single characters or syllabograms in their respective standard fonts, and in the multiform cursive “deviations” from their fixed font forms, or to put it in different terms, to parse the running co-ordinates of each character, syllabogram or ideogram of any scribal hand in each of these scripts. This procedure effectively encapsulates the “style” of any scribe’s hand, just as we would nowadays characterize any individual’s handwriting style. This hypothesis constitutes a breakthrough in the application of graphology a.k.a epigraphy based entirely on the scientific procedure of geometric co-ordinate analysis (GCA) of scribal hands, irrespective of the script under analysis.Cuneiform:Any attempt to isolate, identify and characterize by manual visual means alone the scribal hand peculiar to any single scribe incising a tablet or series of tablets common to his own hand, in other words, in his own peculiar style, has historically been fraught with difficulties. I intend to bring the analysis of scribal hands in cuneiform into much sharper focus by defining them as constructs determined solely by their relative positioning on the X Y axis plane in two-dimensional Cartesian geometry. This purely scientific approach reduces the analysis of individual scribal hands in cuneiform to a single constant, which is the point of origin (0,0) in the X Y axis plane, from which the actual positions of each and every co-ordinate on the positive planes (X horizontally right, Y vertically up) and negative planes (X horizontally left, Y vertically down) are extrapolated for any character in this script, as illustrated by the following general chart of geometric co-ordinates (Click toENLARGE): Although I haven’t the faintest grasp of ancient cuneiform, it just so happens that thislapsus scientiaehas no effect or consequence whatsoever on the purely scientific procedure I propose for the precise identification of unique individual scribal hands in cuneiform, let alone in any other script, syllabary or alphabet ancient or modern (including but not limited to, the Hebrew, Greek, Latin, Semitic & Cyrillic alphabets), irrespective of language, and even whether or not anyone utilizing said procedure understands the language or can even read the script, syllabary or alphabet under the microscope. This purely scientific procedure can be strictly applied, not only to the scatter-plot positioning of the various strokes comprising any letter in the cuneiform font, but also to the “deviations” of any individual scribe’s hand or indeed to a cross-comparative GCA analysis of various scribal hands. These purely mathematical deviations are strictly defined as variables of the actual position of each of the various strokes of any individual’s scribal hand, which constitutes and defines his own peculiar “style”, where style is simply a construct of GCA analysis, and nothing more. This procedure reveals with great accuracy any subtle or significant differences among scribal hands. These differences or defining characteristics of any number of scribal hands may be applied either to: (a) the unique styles of any number of different scribes incising a trove of tablets all originating from the same archaeological site, hence, co-spatial and co-temporal, or (b) of different scribes incising tablets at different historical periods, revealing the subtle or significant phases in the evolution of the cuneiform script itself in its own historical timeline, as illustrated by these six cuneiform tablets, each one of which is characteristic of its own historical frame, from 3,100 BCE – 2,250 BCE (Click toENLARGE), and in addition (c) Geometric co-ordinate analysis is also ideally suited to identifying the precise style of a single scribe, with no cross-correlation with or reference to any other (non-)contemporaneous scribe. In other words, in this last case, we find ourselves zeroing in on the unique style of a single scribe. This technique cannot fail to scientifically identify with great precision the actual scribal hand of any scribe in particular, even in the complete absence of any other contemporaneous cuneiform tablet or stele with which to compare it, and regardless of the size of the cuneiform characters (i.e. their “font” size, so to speak), since the full set of cuneiform characters can run from relatively small characters incised on tablets to enormous ones on steles. It is of particular importance at this point to stress thatthe “font” or cursive scribal hand size have no effect whatsoever on the defining set of GCA co-ordinates of any character, syllabogram or ideogram in any script whatsoever. It simply is not a factor. To summarize, my hypothesis runs as follows: the technique of geometric co-ordinate analysis (GCA) of scribal hands, in and of itself, all other considerations aside, whether cross-comparative and contemporaneous, or cross-comparative in the historical timeline within which it is set ( 3,100 BCE – 2,250 BCE) or lastly in the application of said procedure to the unambiguous identification of a single scribal hand is a strictly scientific procedure capable of great mathematical accuracy, as illustrated by the following table of geometric co-ordinate analysis applied to cuneiform alone (Click toENLARGE): The most striking feature of cuneiform is that it is, with few minor exceptions (these being circular), almost entirely linear even in its subsets, the parallel and the triangular, hence, susceptible to geometric co-ordinate analysis at its most fundamental and most efficient level. It is only when a script, syllabary or alphabet in the two-dimensional plane introduces considerably more complex geometric variables such as the point (as the constant 0,0 = the point of origin on an X Y axis or alternatively a variable point elsewhere on the X Y axis), the circle and the oblong that the process becomes significantly more complex. The most common two-dimensional non-linear constructs which apply to scripts beyond the simple linear (such as found in cuneiform) are illustrated in this chart of alternate geometric forms (Click toENLARGE): These shapes exclude all subsets of the linear (such as the triangle, parallel, pentagon, hexagon, octagon, ancient swastika etc.) and circular (circular sector, semi-circle, arbelos, superellipse, taijitu = symbol of the Tao, etc.), which are demonstrably variations of the linear and the circular. These we must leave to the geometric co-ordinate analysis of Minoan Linear A, Mycenaean Linear B and Arcado-Cypriot Linear C, all of which share these additional more complex geometric constructs in common. When we are forced to apply this technique to more complex geometric forms, the procedure appears to be significantly more difficult to apply. Or does it? The answer to that question lies embedded in the question itself. The question is neither closed nor open, but simply rhetorical. It contains its own answer. It is in fact the hi-tech approach which decisively and instantaneously resolves any and all difficulties in every last case of geometric co-ordinate analysis of any script, syllabary or indeed any alphabet, ancient or modern. It is neatly summed up by the phrase, “computer-based analysis”, which effectively and entirely dispenses with the necessity of having to manually parse scribal hands or handwriting by visual means or analysis at all. Prior to the advent of the Internet and modern supercomputers, geometric co-ordinate analysis of any phenomenon, let alone scribal hands, or so-to-speak handwriting post AD (anno domini), would have been a tedious mathematical process hugely consuming of time and human resources, which is why it was never applied at that time. But nowadays, this procedure can be finessed by any supercomputer plotting CGA co-ordinates down to the very last pixel at lightning speed. The end result is that any of an innumerable number of unique scribal hand(s) or of handwriting styles can be isolated and identified beyond a reasonable doubt, and in the blink of an eye. Much more on this in Part B, The application of geometric co-ordinate analysis to Minoan Linear A, Mycenaean Linear B and Arcado-Cypriot Linear C. However strange as it may seem prima facie, I leave to the very last the application of this unimpeachable procedure to the analysis and the precise isolation of the unique style of the single scribal hand responsible for the Edwin-Smith papyrus, as that case in particular yields the most astonishing outcome of all. © by Richard Vallance Janke 2015 (All Rights Reserved = Tous droits réservés)

You must be logged in to post a comment.